WJEC Wales Biology A Level

SP 3.5: Investigation into the abundance and distribution of plants in a habitat Practical notes

Introduction

Abundance refers to the number of different species present in a habitat. Distribution refers to the spread of organisms in a habitat.

The abundance and distribution of organisms in a habitat are affected by both biotic and abiotic factors. Biotic factors are the living aspects of an ecosystem such as predation, competition and disease. Abiotic factors are the non-living aspects of an ecosystem and include water availability, light intensity and temperature.

The abundance and distribution of a plant species can be investigated using a variety of methods as outlined in this practical.

Equipment

- 0.25×0.25 quadrat
- $2 \times 10 \mathrm{~m}$ tape measure
- 20 m tape measure
- Dichotomous key

Risk assessment

Hazard	Risk	Precaution	Emergency
Plants (thorns, sting, poisonous)	Adverse skin reaction	Keep skin covered at all times	Carry out appropriate procedure e.g. take an antihistamine for stings; seek medical assistance
Insect bites and stings	Adverse skin reaction	Keep skin covered at all times; wear insect repellent	Take an antihistamine; seek further medical assistance
Weather	Hypothermia; hyperthermia; sunburn	Wear appropriate clothing; bring suitable kit e.g. suncream, sunglasses, gloves	Seek medical assistance
Terrain	Slipping, tripping	Wear appropriate footwear; take care when walking; don't run	assistance

Method 1

In a habitat where abiotic variables are even, random sampling is carried out using a quadrat:

1. Position two 10 m tape measures at right angles along the border of the sample area.
2. Use a random number generator to randomly select two numbers which serve as the x -coordinate and y -coordinate with the tape measures as the axis.
3. At each location, place the left hand corner of the quadrat at the coordinate point.
4. Identify the species present in each quadrat using a dichotomous key.
5. Take readings at 10 pairs of randomly-generated coordinates and calculate a mean. Record the abundance of plant species by:
a. Directly counting individuals and calculating a plant density (mean per m^{2}).
e.g. if a mean of 4.6 plantains per $0.25 \mathrm{~m}^{2}$ is calculated, plant density is equal to $4.6 \times 4=18.4$ plantain plants per m${ }^{2}$.
b. Estimating the percentage cover

A quadrat is divided into 100 squares so that each square represents 1\%. Estimate the \% cover of each plant species.
c. Using the ACFOR system and converting into a numerical value

ACFOR scale	Abundance scale
Species absent	0
Rare	1
Occasional	2
Frequent	3
Common	4
Abundant	5

6. Compare readings from areas of different abiotic factors

Method 2

A transect can be used in a habitat where a correlation between an abiotic variable and the distribution of organisms exists.

Two types of transect line exist:

- Line transect - organisms that touch the transect line at regular intervals are recorded.
- Belt transect - quadrats are placed at regular intervals along the transect line allowing the density, \% frequency or \% area cover to be estimated.

A method involving the use of a belt transect is outlined below:

1. Place a 20 m tape measure across a sample area to make a transect line.
2. Place a quadrat at regular intervals (e.g. every 5 m) along the transect line. Ensure that the bottom left-hand corner of the quadrat touches the interval mark.
3. Use a dichotomous key to identify the species present in the quadrat. Record the abundance of plant species by estimating the density, \% frequency or \% area cover.
4. Produce a kite diagram of species distribution against distance along the transect.

Example results

Species	$\%$ area cover at distance along transect (m)					
	0	5	10	15	20	
Grass	75	60	30	5	0	
Moss	5	10	60	60	60	
Bracken	20	15	10	10	10	

Example kite diagram

